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Abstract: Let H € C"™" be a unitary upper Hessenberg matrix whose eigen-
values, and possibly also eigenvectors, are to be determined. We describe

how this eigenproblem can be solved by a divide and conquer method, in
which the matrix H is split into two smaller unitary right Hessenberg
matrices H; and H, by a rank-one modification of H. The eigenproblems for
H; and H, can be solved independently, and the solutions of these smaller
eigenproblems define a rational function, whose zeros on the unit circle
are the eigenvalues of H. The eigenvectors of H can be determined from
the eigenvalues of H and the eigenvectors of H; and H,. The outlined
splitting of unitary upper Hessenberg matrices into smaller such matrices
is carried out recursively. This gives rise to a divide and conquer
method that is suitable for implementation on a parallel computer.

When H € R"™" is orthogonal, the divide and conquer scheme simplifies
and is described separately. Our interest in the orthogonal eigenproblem

stems from applications in signal processing. Numerical examples for the
orthogonal eigenproblem conclude the paper.
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1. Introduction

Divide and conquer (DC) methods have been developed for the symmetric
eigenproblem, see Cuppen [Cu], Dongarra and Sorenson [DS], and

Krishnakumar and Morf [KM], and have for these problems been shown to be

efficient on parallel computers and competitive on single processor
machines [DS],[Cu],[KM]. The DC method has also been applied successfully
to the computation of singular values by Jessup and Sorensen [JS]. in the
present paper we describe a DC method for the unitary eigenproblem, and we
also discuss the simplifications that arise for real orthogonal matrices.
Let H € C"*" be unitary. Then H is unitarily similar to a upper
Hessenberg matrix with real-valued non-negative subdiagonal elements. 1t
a subdiagonal element vanishes, then the eigenproblem splits into
eigenproblems for smaller upper Hessenberg matrices. We therefore may
assume that H is a upper lHessenberg matrix with positive subdiagonal
elements. Then all eigenvalues of H are simple. It is easily seen that H

can be written as a product of n Givens reflectors qie cnxn,

H = H(vy1:725--+97n) = GG, . J]mlGn, (1.1)

where, for 1 < k < n,

Ik-l
Tk %k
Gk = _ ) 7k € C, Uk € R, Uk > O,
Tk Tk
I 1?2 + o = 1 (1.2a)
n-k-1 k k ’
and
In-l
Gn = i v € C, || =1 . (1.2b)
“In
2




Here ” denotes the jxj identity matrix. The L 1 < j £ n, are the so-
called Schur parameters of H, and 7 denotes the complex conjugate of ;.

The 0., 1 < j € n, are said to be complementary parameters of H, and are
; < p )

the subdiagonal elements of H.

The DC method described uses the product representation (1.1) of H,
the so-called Schur parametric form of H. An application of particular
interest to us is the computation of Pisarenko frequency estimates fér a
random stationary stochastic process, see below. In this application H is
defined by its Schur parametric form. The determination of Gaussian
quadrature rules on the unit circle, so-called Gauss-Szegd quarature
rules, also gives rise to unitary (or real orthogonal) matrices in Schur
parametric form, see Section 5. When the Schur parameters are not

explicitly known, they can be computed from
711 = -l
5 = .(Gj}_‘1 qﬁz o6l el Wy, 5 =2,3,...,0,
where GE denotes the conjugate transpose of G,, and Mjj denotes the element

(j,j) of a matrix M € C"*",

The DC method is most easily described for H € R"*" orthogonal. Then

H, Is
H = Gl G2 .« . GS-I Gs G5+1 “ e Gn =: 1 Gs H 3 (1.3)
n-s 2

where H; € R®*® and H, € RTIXS) e orthogonal. The Givens reflector

Gs € R™*", s < n, can be written as a Householder transformation

Gg = I - 2ww! (1.4)

where:




W = €gug + es+1ws+1 € Rn 3 (1.5)
ws 1= 2721 4+ 492, (1.6a)
Wspy 1S —2 V1 - a2 (1.6b)

Throughout this paper € denotes the jth column of an identity matrix of

appropriate order. By (1.3)-(1.4), H is orthogonally similar to

H,

H' (1 - 2wwH) =: H - 2fww" . (1.7)

H,

This is one step of the DC method for orthogonal matrices: The eigen-
values, and if so desired the eigenvectors, of H; and H, are computed
first. H' is a rank-one modification of H, and the eigenvalues of H are
computed as the zeros on the unit circle of a rational function, whose
poles are the eigenvalues of H'.

Section 2 describes the DC method for unitary matrices. In Section 3
we show some results on the orthogonality of the eigenvectors and on the
location of the eigenvalues. These results are analogous to bounds
presented by Dongarra and Sorensen [DS] for the DC method for symmetric
matrices. Section 4 discusses simplifications that can be made when
H is real and orthogonal, and also considers some computational details.
Computed examples for the orthogonal eigenvalue problem are presented in
Section 5.

An outline of a unitary DC method with convergence results for the
root-finder has previously been presented in [GR]. The splitting into
subproblems is done differently in the present paper. A related DC method
is described by Arbenz and Golub [AG]. Cybenko {Cy] reduces the

orthogonal eigenproblem to an eigenproblem for a symmetric tridiagonal




matrix. The orthogonal eigenproblem is in [AGR1] solved by solving
singular value problems for certain bidiagonal matrices, and a QR
algorithm for unitary matrices is presented in [Grl]. A comparison with
respect to accuracy and speed of these methods still remains to be done.
Here we only note that DC methods are suitable for implementation on
parallel computers, see [DS],[KM], and Section 2. Some of the schemes
mentioned transform the orthogonal eigenvalue problem to a symmetric'one.
The real eigenvalues of the latter problem are then mapped to the unit
circle to yield the eigenvalues of the orthogonal eigenproblem. The
mapping from the interval to the unit circle may be sensitive to
perturbations of arguments near the end points of the interval, and it may
therefore be difficult to determine eigenvalues close to %1 accurately

with these schemes.

Pisarenko [Pi] proposed a method for decomposing a random stationary
stochastic process {xm}$;0’ Xm € R, into a sum of harmonics in white

noise, 1i.e.,

p
Xm = ) ag cos(m¢€ + 90-+ym, m > 0, (1.8)
=1

where the f, are arbitrary phase shifts and {ym}g;O is a zero mean white
noise process with variance ¢2. The ¢e are called Pisarenko frequency
estimates. Assume for simplicity that p is the number of distinct
harmonics in the ‘signal’ {xm}$;0 is known, and that 0 < ¢, < = for

1 € € < p. Then the ¢y can be determined as follows. Form the

(2p+1)x(2p+1) Toeplitz covariance matrix M for the signal {xm}g;O, and

9
compute its least eigenvalue ), ... Then A . = o2, see [Pi]. Let {U};gl be
the Schur parameters associated with the Toeplitz matrix M-Ainl: They can

5




be determined from the Szegd recursions (Levinson’s algorithm), see e.g.

[(AGRZ]. From our assumptions it follows that M-A, I is singular, but

leading principal submatrices not identical with M-X_, I are not.

Therefore, -1 < 737 <1 for 1 < j < 2p, and T2p € {-1,1}. By (1.1)-(1.2) it
9

follows that the Schur parameters {n};zldefine an orthogonal matrix H €

2pX2p . C e . 2p .

R with distinct eigenvalues {%}kﬂ. Enumerate the eigenvalues so that

those with Im(}) > O have smaller index than the eigenvalues with Iﬁ(&) <

U. Then the Pisarenko frequency estimates are given by

¢; 1= arg(l) , 1 <j<p

The coefficients a; of (1.8) are two times the weights belonging to the
Gauss-Szegd quadrature rule with abscissas Adjis 1 £ jJ £ p. For details see
[AGR2], where also references to related work can be found. The unitary
DC method yields the Gauss-Szegdé weights with no extra computational
effort when computing the eigenvalues M. Gauss-Szegd quadrature is

discussed in Example 5.1 of Section 5.




2. The unitary eigenproblem

In this section we describe a divide and conquer method for unitary
right Hessenberg matrices with positive subdiagonal elements. First we
need to generalize the splitting (1.3)-(1.7) to Givens reflectors with
complex-valued Schur parameters. This is accomplished by noting that the
Gs defined by (1.2a) are diagonally unitarily equivalent with a real

Householder transformation. Introduce

' s/ st s # 0
Is =
1 s s = 0
Then |7él = 1, and for Gs defined by (1.2a) we obtain
Is+1 Is
‘72 Gs s
In-s In-s-l
Is-1 T
s os
= (2.1)
os |7
L In—s—]_J
where, similarly to (1.5)-(1.6), ' = esws + €ct1Wet1 € R" and
ws 1= 2201 4 |4 V2, (2.2a)
-1/2
wepy = -23(1 - V2 (2.2b)
Substitution of (2.1) into (1.1) yields
H 1
H=| ! (1 - 2wty | °° (2.3)

~1




with

!
H]_ H(719729--"75_19‘7s)’

i

=/ =/ = 1
“2 H(7s Ts+12 78 Ts425 -2 s Tn)

A unitary similarity transform of (2.3) yields, analogously with (1.7),

m, | y o
H' := (I - 2ww)y =: B - 2HwW" . (2.4)
H,
Let
. H .

He = W A WL ko= 1, 2, (2.5)
be spectral resolutions, i.e., the W, are unitary and the A, are diagonal.
Then H has the spectral resolution H = W A WH, where

- Wi - Ay .

W o= ' , A= = diag(A;,25,...,A0) (2.6)

w2 A2
with A ] =1 for 1 < k < n.

We are in a position to describe how the spectrum of H can be obtained

from A, the last row of W, and the first row of W,. Introduce the

characteristic polynomial

x () det(AI-H) = det(A1-H') = det(AI-A+2fiwwt)

ji

i

det (A1-H) det(I+42(A1-i1)tHwwH)

= (M) (1 + 2" a1-0)iw)

v(A) (1 + 2wPW (A1-A) AT




W———:—

where H' is defined by (2.4), W and A by (2.6), w by (2.2) and () :=

det(A[-H]). Let z = [c]}‘zl be given by

Wll{esws

H
"2 €1Ws41

and define the spectral function

_ox(A)y H IN1R ., - L 2 N
o(A) = vy = 1 4+ 227 (A1-A) Az = 1 + 2 _Z_:l ]le IO,
J_
n A+
=3 G172 — . (2.8)
. j A A,
j=1 3
where we have used that zMz = 1. Let
b, := arg(}) , 6 := arg(d) , 0 < 6, 0 < 2«
Then, with i := y-1,
) . .2 % - ¢ .
(X)) = i }_jl 1| cot( 5 ):: id(8) (2.9)
J: -
regy = 1 ¢ 2,28 -8 1 _H 1
¢()~§jz~;l ]gjl/su'l( - )2(-2_2z=§. (2.10)
We may assume that the % are distinct and that all Q # O, because
otherwise we can make these conditions hold by deflation, see below. Let

9; € {0,272, 1 € jJ € n, denote the zeros of ®(§). Then the eigenvalues of
H and of H are given by A; 1= exp(i&f), 1 < j £ n. The sets {Q}ﬁzland
{%'H;l strictly interlace.

We describe a rootfinder for ®(8). By the inequality (2.10), the

zeros of ®(6) can be determined accurately. We may assume that




0 <6, <b, < ... < 0y < 2r and that ¢0), our initial approximation of a

zero of ®(8), satisfies §,-2r < g(®) < #;. By the strict interlacing of the

sets {631 . and {6/} ., ¥(8) has precisely one zero, denoted 6,/., in the
/=1 I 4)=1 1

open interval ]6,-2x, 6;[. Assume for the moment that

(6% < o , (2.11)

and introduce

$(0) 1= p + o cot.(gl > 6) . (2.12)

The coefficients p and o are determined by osculatory interpolation., i.e.,
@(0(0)) — @(9(0)) . &)1(0(0)) - 0’(0(0)) , (2.13)

which yields

{p _ q,(@(o)) B q,r(g(o)) sin(8, - 0(0)) ,

6, - 0(0)))

_ r.0) s 02
2¢°(6°7") sin ( 5

Q
!

The zero 6 of d(6) in ]6n-27,0,[ is our next apprcximation of 0{. New

. . (j+1) ' i o . . -
approximations #¢ of 6, are computed from 6~', j > 1, in a similar
fashion. The sequence {Mn}kﬂ satisfies M” < 0{ for j > 0, and converges
monotonically and quadratically to 0{ as j increases, see [GR] for a

proof.

If instead of (2.11) we have

3% > o , (2.14)
then we replace (2.12) by

$6) = p + o cot,(‘?",T‘g) (2.15)

10




in (2.13). This defines p and ¢. The zero gt1) of $(4) in the open
interval J]#,-2r,0,[ is our next approximation of 0{. New approximations
BU+” of BJ are computed from gt for j > 1 in a similar fashion. The
sequence {OUXHﬁo satisfies oY > 0{ for j > 0, and converges monotonically
and quadratically to 0{, see [GR]. In the implementation used to generate
the computed examples of Section 5, the iterations are carried out until

¢(¢J+”) > ¢(¢n < ¢(¢}ﬂ). The value 69 is accepted as an approximate

root of ®(f) = 0.

From

'6’ .0I .q !
A := diagle ! ,e 2 ,...,e"] (2.16)

and the spectral resolutions (2.5) of H; and H,, we can now compute the

spectral resolution of H:

H = wAwH | whw = 1 . (2.17)

By (2.3)-(2.4), we can for some vector @i € C" express H as

- Hyegw ..
H=H - 2ua" s u = 1S e C"
€1%s41
Let A 1= exp(if’) and v € C" form an eigenpair of H, i.e. Hv = vA. Then
(i - 2uaf)v = va

or, equivalently,

(- INv = ua , e := 2uty

This shows that any normalized eigenvector v of H associated with the

eigenvalue A is a normalization of

11




(Hy-12) M eqws

! 1 -1
vi = (H-2I)""u = .
(Hy-1M)lejwgy,
Wy (1-a0twilegw,
= , -1 r” 9y (2.18)
Wy (Ap-1n)twilegw |
where W, and A, are given by (2.5). Let | ||, denote the Euclidean vector
and matrix norms. From |[W,]l, = JIW,ll, = JIAfll, = 1 and (2.6), (2.7), (2.10),
(2.18) it follows that
§(A) = VI = NA-IA)T 2 |,
a ICJ|2 1/2 1g/ 1/2 1
= (‘g m) = (52°(9)) 2 5 - (2.19)
=1 14

We choose

Hyy-1,H
Wi (I-A7A) "Wilegw
SN I AL V7 TG VI (2.20)
Wy (Ay-12) W2e1w5+1

and note that the lower bound (2.19) for 6()) indicates that severe

cancellation of significant digits does not take place in the computation

-

of v, by (2.20).

By (2.7), we only require the last row of W, and the first row of Wy
(as well as A) in order to determine the spectral function (2.8). Hence,
if we do not desire the eigenvectors, then it suffices to determine the
first and last rows of W in order to be able to compute the spectrum of

larger problems. We call the triplet {A,e?W,eEW} the partial spectral

resolution of H. The first and last elements of v, can easily be

determined from

eflw, (1-alnytwle ug 50y
(2.21)

i

{e?vA
ellv, = ellgw,(A-1n) Wle wg,,/6(0)

12




We may assume that the columns of W are such that all components of the
vector WHe1 are real and positive. Then eEWHe1 is the weight correspond-
ing to the node exp(i@d) in the Gauss-Szegdé quadrature rule with nodes
{exp(iGJ)}iﬂ, see [Gr2] and Example 5.1.

We assumed above all components Ce of z to be non-vanishing and all

eigenvalues ) of H to be distinct. These conditions can be made to hold
true by deflation. Our discussion follows Dongarra and Sorensen [DS].

First assume that (, vanishes. By (2.4)-(2.7),

WHH'S = R - 2@MAwWPe = A - 222Y) (2.22)
and from eeHz = 0 it follows that

- H - -

A(L - 2zz")e, = Re, = Nje,, Ao i= e fRe, . (2.23)
Substituting (2.23) into (2.22) yields

H'We, = Wep),

and therefore

W, LY

H e, =
Wyt e WA,

ephg

Thus if (¢ = 0, then we can determine an eigenpair of H without explicitly
computing a zero of ®(f) and without using (2.20).

For a ge.eral z € C", with 2"z = 1, we obtain

IA(1-2zz") e ll, = 21¢,1

and we accept {Aé’ed} as an eigenpair of A if

13




21¢,l < ¢ (2.24)

for some small constant ¢;.
Assume that z = [g]ﬁﬂ with 2|g| > ¢; for all j. We may now be able to
deflate due to close eigenvalues. Let A = diag[A;,2,...520] with

Ay = Xy, and choose the Givens reflector

._" 0 .
G = o J e C"*" (2.25)
In-2
so that
Gz = [(1¢12 + 161DY2,0,¢5,¢. 56017
1.€e.

16171617 + (61212
/UG 1Y

——
< Q
" I

We accept {7102 + 72|7|2,GHe2} as an (approximate) eigenpair of

A1 - 2zz"Y if

fre(Ar - A1 £ €y (2.26)

for some small constant e,, because

IA(1-222")G e, - (00?2 + 1217136 esll; = [v0 (7 - 72) |
If v, = 7, then we have determined an eigenpair exactly. In case
A # M we note that |yo(A; - Ay) | < %lhl - X], and, moreover, if |y] = O
or |yl = 1 then |yo(X; -~ X)) | << |[A; - A|. Hence, inequality (2.26) may

be satisfied, even if | - )| > ¢,. Assume that (2.26) is valid. Then A

is replaced by

14




A iz diag[M (72) + 202, A5, 0, .0 ,0n] € ciD” (D
and if A has close eigenvalues, then deflation is repeated.

The unitary DC method can be used in two ways. One approach is to
divide the original eigenproblem, as well as subproblems so obtained,
until only trivial eigenproblems of orders two and one remain. These
small eigenproblems are solved analytically. From the solutions of small
eigenproblems, the solutions of eigenproblems of larger size are computed,
and this step is repeated until the solution of the original eigenproblem
has been determined. This approach is used in the numerical examples of
Section 5.

An alternative approach is to use the DC technique to generate just a
few subeigenproblems, each of which can be solved independently by some
other numerical scheme, such as the unitary GR method [Grl1], or the scheme
in [AGR1], in case the matrix is real orthogonal.

We conclude this section with some bounds of the computational
complexity of the unitary DC method. Assume that H € C"*" is given in
Schur parametric form (1.1) with positive subdiagonal elements ¢,. Let n =

J Ll

28 for some positive integer €, and subdivide the given eigenproblem until

% eigenproblems for 2x2 matrics are obtained. The latter eigenproblems
are solved analytically. We assume that the number of iterations required

by the rootfinder for ®(8) can be bounded independently of n.
Let first n independent processors be available. The reduction of the
original eigenproblem for H to % eigenproblems for 2x2 matrices can be

carried out in t, := 0(log2%) time steps. This computation only requires

the determination of the Schur parameters for the unitary matrices of the

smaller eigenproblems, see (2.3). Let the Schur parameters for all %
unitary 2x2 matrices be known. The spectral resolution of all these
15
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matrices can be computed in t, := 0(1) time steps. Assume that the

partial spectral resolutions (2.21) of all b+t unitary 2"l x 2"l patrices

are known for some j € [2,¢]. In order to compute the partial spectral
resolution of all 2&junitary > x o matrices, we have to compute 2 zeros
of each of the 20j functions ®(f), see (2.8). Hence, a total number of n
zeros have to be computed, and we use one processor to determine each one.
Each function ®(f) has Qiterms, and can therefore be evaluated in O(f)
time steps for each value of 6. Hence, we can determine all eigenvalues
of all 2&junitary 2 x 2 matrices in tg):z O(?) time steps. For each
eigenvalue we compute the first and last elements of the corresponding
eigenvector from (2.21). The first and last element of one eigenvector
can be determined by one processor in D(f) time steps. These
computations have to be carried out for n eigenvectors by n processors and
therefore require tg) = 0(25 time steps. Hence, the number of time steps
required to determine the partial spectral resolution of H by n processors
is

4 i 4 j
t; + ty, + Y tg) + ¥ t?) = 0(n) . (2.27)
j=2 =2

Now let n? independent processors be available, and assume that the

bit1 unitary 2! x 2! matrices are

partial spectral resolutions of all 2
known for some j € [2,]. We have now n processors available for each
evaluation of each of the 2€_j functions ®(#). Each of these functions ¢(6)
has 2 terms and can for each value of 6 be evaluated in O(log225 time
steps. Hence, we can compute all eigenvalues of all 2&junitary 2’x?
matrices in Eg) i = O(log225 time steps. The first and last elements of

each eigenvector of each of the 2&'unitary 2 x 2 matrices can be

16




... -
determined in E?) := 0(log, 2') time steps, by using n processors to
compute each sum with 2! < n terms. The initial determination of the %

unitary 2 x 2 matrices and their spectral resolutions cannot be sped up

essentially by using more than n processors, and requires 0(t;) + 0(ty)
time steps. Hence, the number of time steps required in order to compute

the partial spectral resolution of H by n? processors is

£ () £ () £ . _

O(t;) + 0(ty) + 2% tg +'Zé tg = 0(logyn) +.zé 0(j) = O(log%n) . (2.28)
J= J= )=

The time complexities (2.27)-(2.28) suggest that the unitary DC method

presented could be attractive for use in real-time signal processing

applications.




3. Some properties of the unitary DC method

We show some properties of the eigenvectors of H and zeros of ®(4).
Analogous results have previously been obtained by Dongarra and Sorensen
(DS, Lemmas 4.2, 4.6 and 4.7] for the DC method for the eigenproblem for
symmetric tridiagonal matrices. The following formulas are used in

several of the proofs:

n a M
¢(A) =1+ 25 1417 v—/ > (3.1)
j=1 J
¢'(\) = -2 Xn,‘ 1¢12 N (3.2)
=1 ! (A - "j)z
d'(6) = ' (M)A . (3.3)
Lemma 3.1 Let Mp € €, |[A| = |pg| =1 and A # u. Assume that Ay ¢ {M};ﬂ,
where A = diag[X,X,...,}]. Let v, and v, be defined by (2.20). Then
- A) -
vy tval = 160 12 |EA - o)
(3.4)
d(6 - d(9
A Iy |0A |6u
e - e
where A = e 7, u = e , 0 < 0A* Ou < 2m . In particular, if A and u are

distinct eigenvalues of H, then ¢()) = ¢(u) = 0, and therefore v?vu = 0.

Proof. By (2.20), (2.6) and (2.7),
W, " [ A ~
vy = (A - 1) z/6(0) , (3.5)
WZ-J In-s

and therefore
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v/\Hvﬂ = 5%:—)(7\ - INYA - 1! 5_(211—)
= (6<A>6(u>>"j§l o ff)’& — - (3.6)
Now
Substituting (3.7) into (3.6) yields
valvi = (2808 (2 J_é 'Cj_'if" - 2j2:21 'i{_'j?") ,

and by (2.19), (3.1) and (3.3),

Vit = (' ()8 () w2 éii%-f*%iﬂl

i, ®(0 - &(6
e - e

This shows (3.4). ]

The denominator |A-p| in (3.4) suggests that it may be numerically
difficult to obtain orthogonal eigenvectors when the associated

eigenvalues are very close. The following lemma sheds some light on this

situation, and shows that due to deflation the roots of ®(f) are bounded

away from each other.

Lemma 3.2 Let M =e’, 1 < j € n, be the eigenvalues of A, and let z =

[g];ﬂ be defined by (2.7). Let ¢; be an arbitrary but fixed positive
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constant and assume that the M are pairwise distinct and that QIQI > €
for all j. These conditions can be made valid by deflation. Assume that
the M are sorted so that 0 < #; < #, < ... < 6 < 27, and let boy1 = 27 +

f;. Let § € [0,27][ be a zero of ®(6), and let k be such that §, < # < Ot -

Then
1 ‘% 2
0-0 > $(041-0) = 8p1-0 > min{;5Ouy1-00,Z} . (3.8)
1 ‘% 2
bepr1-0 > §(0k+1"0k) = 6-6, > min{f6(0k+1‘0k)’?%} . (3.9)
Proof. Introduce the index sets
I, = {j: 6 < b + 27 < 6 + =, for some ¢ € Z, 1 < j < n} ,
I, := {j: 6-7n < b + 27t < f, for some € € Z, 1 < j < n}
Then I, N I, = 0 and I, U I, = {1,2,...,n}. Further
_ 0. <0 J el
s e {50 )
4 >0 , j € I,.

In particular, k € I, and, provided that k < n, k+1 € 1. If k = n then

1 € I,. Moreover,
cot(i;;gkij) < Cot(e é %) R Vi € 1,
{ (3.10)
cot(g 5 ak) > cot(e ; %) , Vi € I,

From ¢(4) = 0, it follows that

6-6. 6-9,
- X 112 cot(—=2) = & 1¢I? cot(—=T) . (3.11)
jel, J ( ) jet, ) ( 2 )
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By (3.10), (3.11) and z"z = 1 we obtain, provided that k < n,

~1¢e1t? cot(ﬂg"—ﬂ) < cot(a—%) , (3.12)

or, equivalently,

YOk tan(%) < tan(0k+21—0) : (3.13)

If k = n then we define (,;; = ¢(n and (3.12)-(3.13) remain valid.

Now assume that

0 - 6 2 304y - O - (3.14)
We wish to determine a lower bound for §,,,-f. From tan % < x for
0 < x < %f it follows that if 0 < 6,4,-6 < %%, then
6 -0
tan(*H—) < by - 0 . (3.15)

Substituting (3.14)-(3.15) into (3.13) yields

|Ck+1|2 taxx(%(6k+1 - 0)) < Ogpq -6,

and from tan(d(6,4,-60)) > 1(641-0¢) s we obtain
|<k+1i2%1(9k+1‘ f) < beyq - 0 . (3.16)

Finally, substituting |[(4,| 2 % into (3.16) yields (3.8).
In order to show (3.9), we note that from (3.10)-(3.11) and zHz = 1 it

follows that

- cor( ) 2 161 cor(T)

or, equivalently,

0 - 6,
2

tan( ) > ¢, 12 tan(ak_"l,———z—_—o) , (3.17)
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which corresponds to (3.13). We now assume that

bepy - 0 2 %(9k+1 -6 . (3.18)
We would like to determine a lower bound for 6-6,. Similarly as in the
derivation of (3.15) we obtain that if 0 < -6, < % then

tan(e—%ﬁ) <6 -6 . (3.19)

From (3.17)-(3.19) and tan(%(0k+lﬁ))2 gﬂk+l—6), we obtain
6 - 0 2 1612 L (0yr - ) - (3.20)

Finally, substituting |[{,] 2> into (3.20) yields (3.9). o

9
2

Our final lemma shows that the computed eigenvectors are close to

orthogonal if the zeros of ®(f) are evaluated with sufficient accuracy.

Lemma 3.3. Let A = diag[A;.25,....2,], and let A, i be computed
approximations of the distinct roots A, p of ¢. Introduce the relative
errors oy, B, of Ak—x and M -ji, respectively, i.e.

p2}
1

{Ak - (A - M)A + o)
k =1,2....,n . (3.21)
M - e = W) (1 + By)

h~3}
Il

Assume that for some constant O < ¢ < 1, |a,] <€ ¢ and |8 | < ¢ for all k,
and that (A] = [A{ = 1. Then
IviPv. 1l = |v,BCv,| < €e(2 + ()(1 + ()2
X b A A= 1T - ¢ ’
where C = diag([p;,p5....,pn] with
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L 3, + Bk + axbB (6(A)6(u>>
Pk =

T d a0 F Bo\s(Mem) (3.22)

0 .
For n := e' U,OSH,] < 2n, we define 6(np) := (%d)'(n)n)l/2 = (%@'(Gn))llz.

Proof. We first note that since A, i are computed by determining zeros of

$(f), O < # < 2r, the requirement |A| = |a| = 1

is satisfied. Analogously

to (3.6) we obtain

v = e(ysan™ B Ll
g k=1 Ok = MOk - #)
R TR ¢ |2
= (6(M)s())?* - - k ,
()R @51 Qe - DO - )+ 3)Q + 5
where the last equality follows from (3.21). Now
n 2
0= vfvy = MG ¥ 5 S

k=1 e = DO - )

and (2.19) imply that

1 'Cklz _ ..
R PRE VI B

Therefore

- 2
Vi Ve T (6(3)6(ﬂ))"<§5 — L
=1 (%= X) (pe-p) (143, ) (1+8y)

_a [k
k=1 (Xk‘A)(Ak—#)

_ ivgay -l ¢, 12 1
= (G0 2 T O\ ey 1) - (3.23)

23




™

which shows that \':\Hv‘.‘ = v,"Cvy with C defined by (3.22). From (2.19),

(3.3), (3.2) and (3.21) it follows that

§(N) ¢ (M)A
3 2 (CA)A (3.24)
=B
n 2 (X)X A/
kzz:l ('Ck' (A-2)? (1+Qk)2)

From (-MA)/(A-2)2 > 0 it follows that A/(A(1+ec)?) > O and therefore
A/A

TR (1 + Jog )2 2 (1 + 2. (3.25)
Kk

Substituting (3.25) into (3.24) yields §(A\)/6(X) € 1 4+ ¢, and similarly one

can show that &(u)/6(it1) € 1 + ¢. Hence, by (3.22),

2
< £+ € + ¢ 2 _ 1 + 2 .
TARE rirarsr S CIEIOME UG (%) (3.26)
Finally,
Ivival = Iva"Cviul < livyllz ICH Divallz = HICH; = max eyl .
and the desired bound now follows from (3.26). D
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4. The orthogonal eigenproblem

The computational work required for the real orthogonal eigenproblem

is smaller than for the unitary one. This section discusses these

differences, and considers some details of our implementation of a DC

scheme for the real orthogonal eigenproblem. QOur computer program is for
the case when H € R"™" with n = 2€, where ¢ is a positive integer, and we
assume in this section that n is of this form. Many of our comments are

valid for more general values of n, also.

We first note that the subdivision of the eigenproblem for H into
smaller eigenproblems, as described by (1.3)-(1.7), does not require any

computational work. Subdivision yields the block-diagonal matrix

fl := G;G3Gg...G,5Gp.3Gp1Gn (4.1)

and we obtain simple formulas for the eigenpairs of each 2x2 block on the

diagonal as follows. Let
BEA 2x2 2 2
G := € R s ~1 <~y <1, ¢ >0, v 4+ ¢° =1 . (4.2)
c 7

Since G is real, symmetric, orthogonal and has distinct eigenvalues
{*1,%}, we have A = 1 and X, = -1. Let x; = [fl,fij be an eigenvector of

unit length. Then we can choose

02-1/2(1 4 7)-1/2

’
€& = 2-1/2(1 + 7)1/2,

(4.3)
and from o = (1 72)1/2 it follouws that
€ = 2-1/2(1 _ 7)1/2
4.
{52 - ‘72-1/2(1 _ 7)-1/2 (4.4)




Cancellation of significant digits is avoided by using (4.3) if v > 0 and

(4.4) otherwise. An eigenvector associated with ) = -1 is given by x, :=
T
[£2s —61] *
If yn = -1 then Gy, = I, and the eigenpairs of G, G, are those of G, ;.
If yp = 1 we need to determine the eigenpairs of
G’ - ~Yn-1 ~%n-1
n-1 ~7n-1
We find that the eigenvalue A\, = -9,; + io,,; of G' has an associated

eigenvector x; := [24/2,-24/2]T, and the eigenvalue A, = -4, , - ic,,; has an

associated eigenvector x, := [QJ/Q,QJ/QJT.
Note that since the eigenvalues of G given by (4.2) are A = %1,

independent of -1 < v < 1, deflation takes place numerous times during the

computations.

We turn to the computation of the Householder transformation (1.4).
In oder to avoid cancellation of significant digits, we compute {wsﬂ%+1}

given by (1.6) as follows. If 9 > 0, then we use (1.6a) and replace

(1.6b) by
. -1/2 -1/2 '
Wsyy = -~ 0s2 (1 + 7s) . (1.6b)

In case 95 < 0, we use (1.6b) and replace (1.6a) by

Wg 1= Us 2-1/2(1 - 75)-1/2 . (1 -6&’)

Due to H having real-valued elements, the eigenvalues and eigenvectors
of H occur in complex conjugate pairs. Therefore only zeros of ®(6) for

0 € § £ » have to be computed. Moreover,

6. - 0
¢(0) = 3 117 cot(Lg—)
J=
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can be simplified. Assume that O < §, < 7 for some k < n and let

b1 = 2m - 6. Then ¢kl = 1¢k41l, and we obtain
. 0,8 B 410 0, -8 b, +8
uteo() o tonntPeor(B57) = 16 (eor(s5Y) - cor(Y)
- 2 2 sin 6 — 2 sin_#
= 14| cos § - cos 6, ~ <k | 9, +6y . /6. -0\ ° (4.5)
N L ANy

We use the right hand side of (4.5) in the computations. If 6, = O then
we need to evaluate cot(—%) as well as cot(léﬁ) = tan %.

The contribution from (4.5) to &' (9) is

1 - cos 8 cos 6, (4.6)

2 d sin ¢ - 2
2 (¢! de(cos 6 - cos ﬁk) = 21l (cos 6 - cos 6,)?

The stable evaluation of the right hand side of (4.6) can be accomplished

as described in Table 4.1.

Conditions Evaluate
ccy €0 %(Sf + s?)
cc, > 0 and =5~ > 0 =S— + (——§——)2
k S4S- 2s,s- 2s,s-
c _ _%k Sk )2
ccy > 0 and 5,5 < 0 28+s- + (25+s-

Table 4.1: Stable evaluation of (1-cck)/(c—ck)2, where

. . . (0,46
c := cos #, ¢ := cos O, s := sin 0, s = sin b, sy = sxn(ﬁ; )
6, -0
s- 1= sin( k2 )

The interlacing of the zeros of ¢(A) with the {Ak}ﬂzlimplies that it

easily can be determined whether § = 0 or § = n are zeros of ®(f). Let

27
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the 6, 1 < k € n, be ordered so that 0 < 0; < 4, <

IA

fp < 7 < fpyy
< ... £ 0sp < 25r. Since the )\ = exp(if,) appear in complex conjugate

pairs, we obtain

{01 >0 = &) =0,

]
o

bp < = &(m)

Finally, we consider the computation of eigenvectors v defined

by(2.20). Let

TN N RO IS CRpy
Y I C SR C TR C ey
A, =: diag[exp(i09)),exp(10()),...,exp(1€ T, 0 < ?S) < 2r
A, =: dlag[exp(le()),exp(lg()),...,exp(lﬂ H1, 0 < q?) < 2r ,
iifess =¢ LD,y
i erens =+ €D, nT
and A =: exp(if), O < 6 < 2r. Then
W, (I-A,P) W Hegws = z; (1 - exp(i(6- 9 Dyyy (U) U)
= (1 - exp(i(o-00))) 2DV
()G{Or}
+ o n T-em(0-6)) W 4 (1mexp (o101 )12 Vsl)
oeslle
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) (1) (1) (1)

=% b (1+icot(%))(§l w; +% > (1- 1tan( ))(

ej(”zo aj(l)zn
()
sin 6.
fn e ) - T 1 g™ (4.7)
0<0(1) 6. "+06 6. -8
j 2 sin(J )sin(32 )
(1) (1)
. 8.’ +8 9.’ _0
-dsing ¥ (Sin(J2+ )Sin(12 ))1 Re (((1) (1))
Vs

We may assume that close eigenvalues have been eliminated from A ang A@

by deflation, and that therefore the 0() and 42) are distinct. Hence, the
(1)

1
sums over 0.() = 0 and Gj = m® contain at most one term each.

Analogously to (4.7) we obtain

Wy (Ap-1X)7 W, €1Wsty = E (eXP(19 ) exp(if))” 1<(2) (2)

J...

= % z: (1+1cot( ))C@)(” % (%: (- 1+1tan( ))(Q)(ﬂ
GJ =0 0j =7
640'% g_o'
. ) . )
+1 5 sin(—") N sin(— )) Re (c(2) (2)) (4.8
2 ) 0-9(2) o+e(2)

e ein()  sin()

(2) @)
g 2 e i )min( ) )
0<()j <
(2) (2)
+ % sin 6 3 cos 42Ksin(E¥;—)sin(i¥§—)>l Re(é2h§”) .
0<8; <

29




The evaluation of §(A) defined by (2.19) can also be simplified. We have

5 = (lg

where, e.g.,

8 |

(1), 2
G |

j=1 [,\_exp(ioj“)) |2 4 ot

(4.9)

The simplifications of this section for the orthogonal eigenproblem have
been implemented in a Pascal program. Several other mathematically
equivalent forms of (4.7)-(4.9) could also be used. We have tried to find

formulas that avoid unnecessary loss of significant digits.
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5. Numerical examples

We report results of some computed examples with an experimental
program for the orthogonal eigenproblem. The program is written in Turbo
Pascal 4.0 and was run on an IBM PC AT computer with unit roundoff
u = 23 ~ 2.10'2. Qur code implements the formulas of Section 4.
Generally very accurate answers are obtained. Lemma 3.2 indicates,
however, that a zero § of ®(f) may be very close to a singular point f; of
®(¢) and by Lemma 3.3 the difference 5—% has to be computed to high
relative accuracy in order to yield nearly orthogonal eigenvectors.
Example 5.2 below shows that, indeed, 5—% can be extremely tiny and that
loss of accuracy in both eigenvectors and eigenvalues may result. This
loss of accuracy could be reduced, e.g., by representing § and f; in higher
precision arithmetic.

In this section A € C"* denotes the diagonal matrix with the computed

R"" as entries, and W € C"X" is the matrix with the

eigenvalues of H €
computed eigenvectors. We evaluacte the residual errors [|[HW-WAfsc and

IWHW-1|leo, where | looc denotes the uniform matrix norm.

Example 5.1. This example discusses the application of the unitary and

orthogonal eigenproblems to the construction of Gauss-Szegd quadrature

rules. Consider the inner product on the unit circle

<f,g> = JI F(N) 200 da(d) (5.1)
with a positive measure da(d). Let ¢, O € k < n, be monic orthogonal
polynomials with respect to (5.1). They satisfy a recurrence relation
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{ Yo (A)
¥ (A)

for some parameters 7, € C such that {9, < 1 for 1 £ k < n. Here

I

1 (5.1a)

Mi1(A) + Tl (M), 1 € k < n, (5.2b)

@bl(k) 1= Ablibl(l/A) is the "reversed polynomial.” Let v, € Cbe an
arbitrary complex number of unit magnitude, and define ¢, by (5.2b) with
k := n. Writing the recursions (5.2) (for 1 < k < n) in matrix form

yields the unitary matrix

H = G,G,...G, ;Gn, (5.3)

whose eigenvalues {Ak}ﬂzl are the zeros of Y. Here G is defined by 174
according to (1.2) for 1 < k < n. Hence, the parameters {y,}" are the
Schur parmaeters for H. Let H = WAWY be a spectral resolution, and define

the weights p, := ]e?Wek|2 for 1 € k € n. Then

J FM)da(A) = 5 e F(A) + en(F)
[Al=1 k=1

is a Gauss-Szegd quadrature rule with respect to the measure da()),
because the error ¢,(f) vanishes when f is any trigonometric polynomial of
degree less than n. See [Gr2] for details. The computed examples
illustrate the case when all Schur parameters 7, are real valued and H
therefore is real orthogonal.

A particularly simple example is 5 = 0, 1 < k < n, and 74 := -1.

Then %, (X)) = X, 0 < k < n, and $5(A) = A" - 1, and therefore

Ak exp(2ri(k~1)/n) ,
{ 1 <k <n . (5.4)
Pk = 1/n
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These Schur parameters have been used for Table 5.1. In the table “#
defl. close e.v.” stands for number of deflations due to close
eigenvalues, and “# defl. small [(|” is short for number of deflations
due to components (, of z of small magnitude. Two eigenvalues are
considered close if (2.26) is satisfied for ¢ := 1-10°°, and [ | is
regarded small if (2.24) is valid for ¢ := 1.10°°. These values of ¢ and

¢, are used in all computed examples of this section.

n |1HW-WA|loo IWHW-11lco # defl. close e.v. # defl. small ||
4 4.6-101? 1.5.1071} 2 0
8 6.4-10°12 3.0.10° 8 0
16 1.4.101! 5.4.107%1 24 0
32 2.9.101! 1.8.1071° 64 0
64 3.9.1011 3.4-101° 160 0
Table 5.1: 4, := 0, 1 < k < nj 7y := -1
For 7, := 0, 1 < k < n, and 7, := 1, we obtain the polynomials ¢, (X)) =
XX 0 < k < n, and ¥,(2) := A" + 1. Hence, the eigenvalues are )\ = .

exp(in(2k-1)/n), 1 € k < n, and the Gauss-Szegd weights p, are the same as

in (5.4). Table 5.2 shows computations for the present Schur parameters,

and differs from Table 5.1 mainly in that fewer deflations take place.

n IHW-WA| 0o IWHW -1 )loo # defl. close e.v. # defl. small |(,]

7.8.10712 1.6.1011 0 0
8 1.7-10°11 4.2.1011 2 0
16 3.1-1011 1.6.10710 10 0
32 4.1.101 3.5.10710 34 0
64 5.6-1011 7.5.10710 98 0

Table 5.2: 7y, = 0, 1 < k < n; 7y :=1
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In Tables 5.3-5.4 we have chosen 7, = 0.8, 1 < k < n. This makes the
A, gather in the left half plane. For the examples of Table 5.3 we have

maﬁ Re A, < —%. For the examples of Table 5.4 we obtain max Re }, < —%.
k

n IHW-WAloo IWHW-1|l oo # defl. close e.v. # defl. small [(|
2.7.10712 1.6-1011 2 0
8 5.5-10°11 1.8.101° 8 0
16 5.2.1011 3.2.10°1° 24 0
32 3.2:10°® 9.3.10° 63 1
64 3.2:10°8 1.6-107 157 3
Table 5.3: v, := 0.8, 1 < k < n3; 95 = -1
n NHW-WAlloo IWHW-T | oo # defl. close e.v. # defl. small |¢.|
4.8-1011 1.7-10710 0 0
8 9.4.10°11 5.5-10710 2 0
16 4.8.10710 6.6-107° 10 0
32 6.3-1071° 2.3.10°® 34 0
64 4.2-10°8 1.9-107 97 1
Table 5.4: v, 1= 0.8, 1 < k < n; 75 =1

In the last computed quadrature rules of this example we let the 7,, 1
< k < n, be uniformly distributed in the open interval ]-1,1[, and let 7,

be -1 or 1 with probability each. The v, are determined with the random

1
2
number generator of Pascal. Table 5.5 shows the result of 30

eigenproblems so generated. The maximum, average and minimum in Table 5.5

are over all 30 eigenproblems.
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([HW-WA [0 IWHW- 1|0 # defl. close e.v. # defl. small (|
max 7.2-107 2.5.10°° 30 0
average 5.8.10° 2.3-107 26.5 0
min 2.9.10°° 1.5-10°8 22 0

Table 5.5: Uniformly distributed 9, €]-1,1[, 1 € k < n; uniformly
distributed 9, € {-1,1}. Max, average and min are over
30 eigenproblems with n := 32

The numerical experiments of Table 5.5 indicate that for many choices
of Schur parameters 1v,, the magnitudes |[(,| are not sufficiently small to
give rise to frequent deflations. This behavior has also been observed in
many other computed experiments. In contrast, massive deflation in DC
methods for symmetric tridiagonal matrices often is caused by small

components of the vector correspnding to z = [(]}_;- a

Example 5.2. This example suggests that it might not be possible to
increase the small lower bound for min IG—%l of Lemma 3.2 significantly.
J
The Schur parameters for Table 5.6 are obtained by reversing the sign of

the 9, 1 € k < n, of Table 5.4.

min |6,| # defl. # defl.
n 1<k<n [HW-WA |l [(WHW- 1|0 close e.v, small [(,|
4 6.6-1072 6.9.10711 3.1.10710 0 0
8 £.1.10 7.2.10710 2.5.10°8 2 0
16 o* 1.2.107 3.1.10°8 10 0
32 o* 7.2.107 1.9:10° 34 2
64 o* 7.2.107 2.6:10°° 97 5
Table 5.6: 4, := -0.8, 1 € k < n; 7n

1. *The matrix has

numerically the eigenvalue A 1 of multiplicity two.
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Because o = 0.6 > 0, 1 < k < n, the matrix H has distinct eigenvalues
mathematically. Numerically two eigenvalues are so close that they are
not distinguished with our present choice of ¢, = 1.10°%. A smaller value
of ¢, such as ¢ = 1-10°%, gave in some numerical experiments larger
residual errors ||HW-WA| or HWHW—IHm“ 8]

Acknowledgment

One of the authors (L.R.) would like to thank Dan Sorensen for helpful

discussions.

36




[AGR1]

[AGR2)

[AG]

(Cu]

[Cy]

(bS]

[Gr1]

[(Gr2]

[GR)

[JS]

[KM]

(Pi]

References

Ammar. G.S., Gragg., W.B., and Reichel, L.: 0On the eigenproblem
for orthogonal matrices. In Proc. 25th IEEE Conference on
Decision _and Control, Athens, Greece, 1986, pp. 1963-1966.

Ammar, G.S., Gragg. W.B., and Reichel, L.: Determination of
Pisarenko frequency estimates as eigenvalues of an orthogonal
matrix. In SPIE vol. 826, Advanced Algorithms and Architecfures
for Signal Processing 11, 1987, pp. 143-145.

Arbenz, P., and Golub, G.H.: On the spectral decomposition of
Hermitian matrices modified by low rank perturbations with
applications. SIAM J. Matrix Anal. Appl. 9, 40-58 (1988).

Cuppen., J.J.M.: A divide and conquer method for the symmetric
tridiagonal eigenproblem. Numer. Math., 36. 177-195 (1981).

Cybenko. G.: Computing Pisarenko frequency estimates. In Proc.
1984 Conference on Information Systems and Sciences, Princeton
University, 1984, pp. 587-591.

Dongarra, J.J., and Sorensen, D.C.: A fully parallel algorithm
for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput.

8, =139-s154 (1987).

Gragg, W.B.: The QR algorithm for unitary Hessenberg matrices.
J. Comput. Appl. Math. 16, 1-8 (1986G).

Gragg, W.B.: Positive definite Toeplitz matrices, the Arnoldi
process for isometric operators and Gaussian quadrature on the ~
unit circle (in Russian). In Numerical Methods in Linear

Algebra, ed. E.S. Nikolaev, Moscow University Press, 1982,

Gragg. W.B., and Reichel, L.: A divide and conquer algorithm
for the unitary eigenproblem. In Hypercube Multiprocessors,
1987, ed. M.T. Heath, SIAM, Philadelphia, 1987, pp. 639-6G47.

Jessup, E.R., and Sorensen. D.C.: A parallel algorithm for
computing the singular value decomposition of a matrix. Report
ANL/MCS-TM-102 Math. Comp. Sci. Div., Argonne National
Laboratory, 1987.

Krishnakumar, A.S., and Morf, M.: Eigenvalues of a symmetric
tridiagonal matrix: a divide-and-conquer approach. Numer. Math.

48, 349-368 (1986).

Pisarenko, V.F.: The retrieval of harmrnics from a covariance
function. Geophys. J. R. Astr. Soc. 33, 347-366 (1973).




DISTRIBUTION LIST

DIRECTOR (2)
DEFENSE TECH. INFORMATION

CENTER, CAMERON STATION
ALEXANDRIA, VA 22314

DIRECTOR OF RESEARCH ADMIN.
CODE 012

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

LIBRARY (2)
CODE 0142

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

DEPARTMENT OF MATHEMATICS
CODE 53

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

CENTER FOR NAVAL ANALYSES
4401 FORD AVENUE
ALEXANDRIA, VA 22302-0268

PROFESSOR WILLIAM GRAGG (15)
CODE 33Gr

DEPARTMENT OF MATHEMATICS

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943

NATIONAL SCIENCE FOUNDATION
WASHINGTON, D.C. 20550

38




